A low memory footprint OpenCL simulation of short-range particle interactions

Raymond Namyst

With Samuel Pitoiset, Inria and Emmanuel Cieren, Laurent Colombet, Laurent Soulard, CEA/DAM/DPTA

STORM
INRIA Group
Context

Short range N-body simulation

- Joint work with CEA/DAM/DPTA
- N-body problem
 - Short-range interactions
 - Forces are neglected if
 \[\text{dist}(p_1, p_2) > r_{\text{cut}} \]
- Goals
 - Develop Exascale-ready version of the Stamp MD application
 - Multiple potentials: EAM, MEAM
 - Coulombic interactions: Ewald summation, Fast Multipoles Method
 - Support of multiple accelerators
 - Simulate hundreds of billions of atoms
 - Verify simulation results with real (nano-scale) experiments

Temperature map and melting zone (empty pores)
Graphite/diamond transition (carbon inclusion)
Atomic simulation of materials

Interactive OpenGL + OpenCL app
Evolution of Parallel Hardware

Exascale Parallel Machines

- SuperComputers expected to reach Exascale \((10^{18} \text{ flop/s})\) by 2020

- From the programmer point of view, the biggest change will come from node architecture
 - High number of cores
 - Powerful SIMD units
 - Hybrid systems

- Extreme parallelism
 - Total system concurrency is estimated to reach \(O(10^9)\)
 - Embarrassingly parallel hardware
 - Do we really want to assign different tasks to each individual computing unit?

- Memory per single computing unit is decreasing
Context

- Joint work with CEA/DAM/DPTA

- New application (ExaStamp) is developed in C/C++
 - Based on SOTL library that exploits multiple accelerators on a single node
 - OpenCL 1.2
 - Focus on low memory footprint implementation
OpenCL programming model

Khronos group, 2008

• OpenCL is supported by majors processors/accelerators vendors
 – NVIDIA, AMD, Intel, IBM

• Initially influenced by GPU execution models
 – Later implemented on different architectures, including CPUs

• OpenCL merits
 – Forces programmers to expose massive parallelism
 – Reflects constraints of manycore architectures
 • No global synchronization
 • Need to feed large vectorization units/numerous HW threads
OpenCL programming model

- The same kernel is executed by many *work items*
 - Domain dimensions
 - 2D
 - #work items along each dim
 - 24 x 24
 - Group size along each dim
 - 8 x 8

Kernel execution

- `get_global_id(0) = 6`
- `get_global_id(1) = 10`
OpenCL programming model

Example

• “ScalVec” kernel
 – Vector “vec” lies in accelerator’s global memory
 – We use one work item per vector element

```c
__kernel void ScalVec(__global float *vec, float k) {
    int index = get_global_id(0);

    vec[index] *= k;
}
```
NVIDIA GPU Execution Model

- Streaming processor
 - Interleaved execution of sequential hardware threads
 - Context switch is free
 - Avoid stalling on memory load
- Streaming multiprocessor
 - Hosts **groups** of HW threads
 - Local memory sharing
 - Synchronization
- Global memory is shared by all streaming multiprocessors
NVIDIA GPU Execution Model

• Several OpenCL workgroups can reside on the same streaming multiprocessor
 – Limited by hardware resources
 • Registers
 • Max HW threads per SP
 • Local Memory

• Shared local memory
 – Much faster than global memory
 – Only a few kBytes!
NVIDIA GPU Execution Model

- Threads are implicitly grouped in warps
 - 32 threads
 - All threads of the same warp execute the same instruction at the same logical cycle
 • No divergence!

- The hardware tries to coalesce memory accesses inside half-warps
 - Aligned and contiguous (wrt half-warps) memory accesses must be preferred
Xeon Phi execution model

Implicit Vectorization

• The OpenCL runtime system spawns 240 OS threads
 - OS threads pinned on each core

• OpenCL workgroups are dispatched among threads
 - Each workgroup is executed sequentially by one thread
 • At least 240 workgroups are needed to feed all cores

• Kernels are implicitly vectorized along dimension 0
 - Work items are grouped to form get_local_size(0)/16 vectors

```c
__Kernel void foo(...)
    For (int i = 0; i < get_local_size(2); i++)
        For (int j = 0; j < get_local_size(1); j++)
            For (int k = 0; k < get_local_size(0); k += VECTOR_SIZE)
                Vectorized_Kernel_Body;
```
Xeon Phi execution model

Code divergence within workgroups

• Conditional code is not harmful when all work items (within a WG) are guaranteed to execute the same branch
 - If(get_local_id(1) == y) foo();

• In other cases, code has to be “predicated” and both IF & ELSE parts are executed for all work items

```c
If(get_global_id(0) % n == 0) 
    res = IF_code();
Else 
    res = ELSE_code();
```

```c
gid16 = get16_global_id(0);
Mask = compare16int((gid % broadcast16(32)), 0)
Res_if = IF_code();
Res_else = ELSE_code();
Res = (res_if & mask) | (res_else & not(mask));
```
A low memory footprint Lennard-Jones kernel

\[F_{ij} = \begin{cases}
24 \frac{\epsilon}{r} \left(\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right) & \text{if } r \leq r_c \\
0 & \text{otherwise.}
\end{cases} \]

(1)

where \(r \) is the distance between \(i \) and \(j \). \(\sigma \) and \(\epsilon \) are constants chosen to fit the physical properties of the simulated material. When the distance between a pair of atoms is greater than the cut-off radius \(r_c \), forces are neglected.

\[\vec{F}_{i*} = \sum_{j \neq i} F_{ij} \hat{u}_{ij} \text{ with } \hat{u}_{ij} = \frac{\vec{i}_{ij}}{r} \]

(2)
A low memory footprint Lennard-Jones kernel

Data structures

Coordinates

\[
\begin{align*}
&x \\
&y \\
&z
\end{align*}
\]

\[
\begin{align*}
x_0 & \quad x_1 & \quad x_2 & \quad \ldots & \quad x_{N-1} \\
y_0 & \quad y_1 & \quad y_2 & \quad \ldots & \quad y_{N-1} \\
z_0 & \quad z_1 & \quad z_2 & \quad \ldots & \quad z_{N-1}
\end{align*}
\]

N = # atoms

Structures of Arrays (SoA)

\[
\text{ROUND}(N)
\]
A low memory footprint Lennard-Jones kernel

Splitting the domain into cubic boxes

• Short-range interactions
 – Forces are neglected beyond a distance of R_{cut}

• Dimension of boxes
 – $R_{\text{cut}} \times R_{\text{cut}} \times R_{\text{cut}}$
 – At most, 27 boxes explored to find neighbors
A low memory footprint Lennard-Jones kernel

Data structures

Coordinates

Boxes

(For the sake of simplicity, we only depict a compact “array of atoms” in the remaining of the presentation)
A low memory footprint Lennard-Jones kernel

Sorting atoms per bounding box

• Bucket-sort
 – Two phases (ie. Kernels)
 • Prefix Sum
 How many atoms in each box?
 • Sorting the array of atoms

![Diagram showing bucket-sort and prefix sum](image-url)
A low memory footprint Lennard-Jones kernel

Parallelization strategy

• We spawn one thread per atom
 – Workgroup size = TILE

• Each workgroup “covers” a variable number of boxes
 – Depends on material density

• Work on contiguous atoms
 – Along x axis

9 atoms spread across 7 boxes
A low memory footprint Lennard-Jones kernel

Parallelization strategy

- Nine steps to compute forces with neighbors
 - Always load contiguous neighbors (x axis)

- At each step, we have to load the contents of N+2 boxes
 - May involve several steps
A low memory footprint Lennard-Jones kernel

Parallelization strategy

• Nine steps to compute forces with neighbors
 – Always load contiguous neighbors (x axis)

• At each step, we have to load the contents of N+2 boxes
 – May involve several steps
A low memory footprint Lennard-Jones kernel

Parallelization strategy

• Nine steps to compute forces with neighbors
 – Always load contiguous neighbors (x axis)

• At each step, we have to load the contents of N+2 boxes
 – May involve several steps
A low memory footprint Lennard-Jones kernel

Variants

- Differences between GPU and Xeon Phi code
 - No Tiling in local shared memory on Xeon Phi
 - No physical scratchpad memory, so shared data is allocated in global memory!
 - Less data alignment constraints on Xeon Phi
 - No need to focus on local memory bank conflicts on Xeon Phi

- Code divergence within workgroups
 - Maybe costly on GPU
 - Can prevent successful vectorization on Intel Xeon Phi
Performance Results

NVIDIA K20C

Throughput and Memory Footprint vs. Number of Atoms
Performance Results

Intel Xeon Phi 5110

- Throughput (#atoms/s)
- Mem. footprint (MB)
- #atoms

Throughput (simple) - solid blue line
Mem. footprintmémoire (simple) - dashed blue line
Throughput (double) - solid green line
Mem. footprint (double) - dashed green line
Performance Results

![Bar chart showing performance results for different kernels and configurations.](image)

- **Kernel**:
 - overhead
 - update pos
 - force
 - box sort
 - box copy
 - box scan
 - box count
 - box reset

- **Time (us) per iteration for 1M atoms**
 - M2075, simple
 - K20c, simple
 - Xeon, simple
 - Phi, simple
 - M2075, double
 - K20c, double
 - Xeon, double
 - Phi, double

The chart compares the performance of different kernels and configurations, with the Y-axis representing time in microseconds (us) and the X-axis representing different configurations and kernels.
Performance Results

Kernel
- overhead
- update pos
- force
- box sort
- box copy
- box scan
- box count
- box count
- reset

% of total time

M2070: simple
K20c: simple
Xeon: simple
Phi: simple
M2070: double
K20c: double
Xeon: double
Phi: double
Performance Results

Multi-accelerators configuration (K20C + Xeon)
Integration into ExaStamp

Object-oriented software architecture

Diagram:
- Node
- Domain
- Grid
- Array<Cell>
- Comm. Manager
- Integration Scheme
- MPI
- Node
- Domain - Grid
- Cell
Integration into ExaStamp

Object-oriented software architecture

- Vectorized code derived from single potential definition

```c
void operator () {
    double *ep_i,
    *fx_i, *fy_i, *fz_i,
    *rx_i, *ry_i, *rz_i;

    vector_t t0, t1, t2, t3, t4, t5;

    t0.load (rx_i);
    t1.load (ry_i);
    t2.load (rz_i);

    t3 = inv(t0*t0 + t1*t1 + t2*t2);
    t4 = t3 * _sigma2;
    t5 = t4 * t4 * t4;
    t4 = t5 * t5;

    t5 = _2epsilon * t5;
    t4 = _24epsilon * t4 * t3;

    t0 = t0 * t4;
    t1 = t1 * t4;
    t2 = t2 * t4;

    t0.store (fx_i);
    t1.store (fy_i);
    t2.store (fz_i);
    t5.store (ep_i);
}
```

\[
t_5 = 2 \varepsilon \left[\left(\frac{\sigma}{\| \mathbf{r}_i \|} \right)^6 - \left(\frac{\sigma}{\| \mathbf{r}_i \|} \right)^6 \right]
\]

\[
t_4 = 24 \varepsilon \left[2 \left(\frac{\sigma}{\| \mathbf{r}_i \|} \right)^6 - \left(\frac{\sigma}{\| \mathbf{r}_i \|} \right)^6 \right] \frac{1}{\| \mathbf{r}_i \|^2}
\]

Flags used to select right intrinsics instructions (at compile time):

(a) `<no flag>`
(b) `__vectorize_sse`
(c) `__vectorize_avx`
(d) `__vectorize_mic`
Integration into ExaStamp

Preliminary performance results

Efficiency with 65 millions atoms on 512 cores (Curie @ TGCC), EAM potential

<table>
<thead>
<tr>
<th>MPI Processes</th>
<th>Efficiency</th>
<th>Memory Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>89.5%</td>
<td>-25%</td>
</tr>
<tr>
<td>128</td>
<td>91.4%</td>
<td></td>
</tr>
</tbody>
</table>

Grain time for 1.8 millions atoms on 2 Haswell sockets (TERA 1000), EAM potential

<table>
<thead>
<tr>
<th>MPI Processes</th>
<th>Time (s)</th>
<th>Memory Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.60967e-05</td>
<td>-33%</td>
</tr>
<tr>
<td>24</td>
<td>1.22596e-05</td>
<td></td>
</tr>
</tbody>
</table>
Current status

- Preliminary OpenCL implementation works quite well
 - More than 90M atoms on accelerators equipped with 5GB RAM
 - Single-precision Lennard-Jones potential
 - More than 20 millions atoms/s on modern GPUs,
 more than 12 millions atoms/s on Intel Xeon Phi
 - No GPU specific tricks
 - Texture memory
 - Low memory consumption
 - Can cope with a high number of particles as well as low density materials
 - Integrated into ExaStamp [MuCoCos 2014]

- Much potential (and ideas) for improvement
 - Several optimizations are still applicable
 - But will impact code complexity
 - OpenCL kernels slightly differ from one arch to another
 - Tuning (workgroup size, occupancy) is painful
What Programming Model for Exascale?

Software @ Exascale

- Millions of tasks/threads to occupy hundreds of thousands of cores
 - Express massive parallelism
 - Reuse and compose existing codes/algorithms

- Portability AND Efficiency over wide range of processors and accelerators
 - Ability to cope with multiple variants of code
 - Autotuning

- Ability to automatically exploit multiple heterogeneous computing units
 - Load balancing
 - Data movements, prefetching
 - Synchronizations
We need to push a new programming framework

1. Manycore oriented Programming Model

2. True cooperation between Compilation Tools and Runtime Systems
OpenCL forms an excellent basis for 1) Manycore oriented programming model

- OpenCL is a standard [Khronos 2008] which meets some of the aforementioned requirements
 - Efficiency
 - Portability

- OpenCL is a good vehicle for expressing extreme parallelism
 - Start from pure, extreme parallelism… then map over a restricted set of resources
 E.g. cores, vector units, streaming processors
A New OpenCL-based programming framework

Tight integration between compilation tools and runtime systems

• OpenCL alone is far from meeting Exascale applications needs!
 – No performance portability
 • Programs are optimized with a target architecture in mind
 – No provision for transparent multi-accelerator programming
 – No provision for adaptive parallelism

• We propose to build a Framework on the OpenCL ecosystem
 – OpenCL language extensions
 • Higher-level programming
 – OpenCL code generation tools
 • Deal with multiple variants of kernels, parameters autotuning
 – Powerful runtime system mechanisms
 • Dynamic kernel splitting, load balancing